TGF beta-induced Smad signaling remains intact in primary human ovarian cancer cells.

نویسندگان

  • Lesley D Dunfield
  • Elizabeth J Campbell Dwyer
  • Mark W Nachtigal
چکیده

Disruptions in TGF beta signaling have been implicated in various human cancers, including ovarian cancer. Our goal was to determine whether ovarian cancer cells isolated from patient ascites fluid were growth inhibited by TGF beta 1 treatment and further characterize the expression and activity profile of TGF beta/Smad signaling components in human ovarian cancer cells. We found that 9 of 10 primary cultures of ovarian cancer cells (OC2-10) were growth inhibited by 16 pM TGF beta 1. One primary ovarian cancer sample (OC1) and the established ovarian cancer cell lines CaOV3 and SkOV3 continued to grow in the presence of TGF beta 1. All cells expressed components of the TGF beta/Smad signaling pathway including TGF beta 1, T beta RI, T beta RII, Smad2, -3, -4, and Smad anchor for receptor activation. Although OC1, CaOV3, and SkOV3 are not growth inhibited by TGF beta 1, they can transmit the TGF beta 1 signal to turn on a transfected TGF beta/Smad reporter gene, p3TP.lux. In addition, all cells up-regulate the endogenous TGF beta target genes Smad7 and PAI-1. p15(Ink4B) mRNA is also up-regulated with TGF beta 1 treatment in OC2-9, whereas the p15(Ink4B) gene has been deleted in OC1, CaOV3, and SkOV3 cells. Homozygous deletion of p15(Ink4B) may account for TGF beta resistance in some populations of ovarian cancer cells. Our data demonstrate that the TGF beta/Smad signaling pathway remains functional in human ovarian cancer cells and suggest that if abnormalities exist in the cellular response of TGF beta signals, they must lie downstream of the Smad proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of c-myc repression coincides with ovarian cancer resistance to transforming growth factor beta growth arrest independent of transforming growth factor beta/Smad signaling.

Many epithelial carcinomas, including ovarian, are refractory to the antiproliferative effects of transforming growth factor (TGF) beta. In some cancers, TGF-beta resistance has been linked to TGF-beta receptor II (TbetaR-II) and Smad4 mutations; however, in ovarian cancer, the mechanism of resistance remains unclear. Primary ovarian epithelial cell cultures were used as a model system to deter...

متن کامل

Effects of fibromodulin protein expression on NFkB and TGFβ signaling pathways in liver cancer cells

Introduction: The incidence rate of liver cancer is continuously increasing. Currently, gene therapy is applied to improve various medical issues such as cancer treatment approaches. Correspondingly, fibromodulin involves in many biological and physiological processes through interaction with growth factors and signaling pathway receptors. The aim of this study was to investigate the effects of...

متن کامل

Transforming growth factor-β signaling in epithelial-mesenchymal transition and progression of cancer

Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that induces growth arrest, tissue fibrosis, and epithelial-mesenchymal transition (EMT) through activation of Smad and non-Smad signaling pathways. EMT is the differentiation switch by which polarized epithelial cells differentiate into contractile and motile mesenchymal cells. Cell motility and invasive capacity are acti...

متن کامل

Effects of RNAi-mediated Smad4 silencing on growth and apoptosis of human rhabdomyosarcoma cells.

Transforming growth factor-beta (TGF-beta) signals through membrane-bound heteromeric serine/threonine kinase receptors. Upon ligand binding, TGF-beta activates intracellular Smad proteins and regulates proliferation and apoptosis in various cell types. To demonstrate the effects of TGF-beta/Smad signal on growth and apoptosis of human embryonal rhabdomyosarcoma (RMS) cells, a strategy of RNAi-...

متن کامل

Blockade of Transforming Growth Factor β/Smad Signaling in T Cells by Overexpression of Smad7 Enhances Antigen-Induced Airway Inflammation and Airway Reactivity

Transforming growth factor (TGF)-beta has been implicated in immunosuppression. However, it remains obscure whether regulation of T cells by TGF-beta contributes to the immunosuppression in vivo. To address this issue, we developed transgenic mice expressing Smad7, an intracellular antagonist of TGF-beta/Smad signaling, selectively in mature T cells using a plasmid construct coding a promoter e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Endocrinology

دوره 143 4  شماره 

صفحات  -

تاریخ انتشار 2002